# One-pot Annulation to Tricyclo[5.3.1.0 ${ }^{3,8}$ ]undecane-2,6-diones by Sequential Three-fold Michael Reactions. A Formal Synthesis of ( $\pm$ )-Seychellene 

Hisahiro Hagiwara,* Akihiro Okano, and Hisashi Uda<br>Chemical Research Institute of Non-aqueous Solutions, Tohoku University, Katahira, Aoba-ku, Sendai 980, Japan


#### Abstract

Lewis acid-assisted triple Michael reactions yield tricyclo[5.3.1.0 ${ }^{3,8}$ ] undecane-2,6-dione derivatives from the trimethylsilyl enol ethers of cyclohex-2-enones and divinyl ketone. The application of this reaction allowed a formal synthesis of ( $\pm$ )-seychellene.


One-pot annulation by multiple $\mathrm{C}-\mathrm{C}$ bond formation has potential for the construction of polycarbocyclic systems from simpler molecules, ${ }^{1}$ and the Michael reaction is an example of this. Thus, the carbanion species generated by the first Michael process still has the possibility of undergoing a successive nucleophilic reaction such as a Michael reaction, an aldol condensation, nucleophilic substitution, a Dieckmann-type condensation, a Wittig condensation, and so on. Although interest in such strategies has been growing, attempts to drive successive carbanionic reactions in one direction often encounters difficulties since the Michael reaction is essentially reversible and a Michael acceptor is usually easy to polymerize. In order to suppress side reactions, various ways of terminating successive reactions have been devised. Successful results were obtained by designing a thermodynamically more stable target molecule under aprotic conditions, or by the participation of an irreversible reaction such as a nucleophilic substitution, elimination, etc. ${ }^{2}$ to control the reaction at the desired stage. As a part of such efforts, we previously reported the one-pot bicycloannulation of the kinetic enolates of cyclohex-2enones (1) with methyl $\alpha$-bromoacrylate (2) to give tricyclo[3.2.1.0 ${ }^{2.7}$ ] octan-6-ones (3). These were constructed by aprotic base-induced successive Michael-Michael-alkylation reactions and in this way the total synthesis of the tetracyclic sesquiterpene hydrocarbon, ( $\pm$ )-ishwarane (4), ${ }^{3}$ was achieved.

(1)

(2)
(3)


Ishwarane (4)

Scheme 1.
Our ongoing interest in the application of sequential Michael reactions to natural product synthesis ${ }^{4}$ prompts us to report our results concerning the synthesis of tricyclo[5.3.1.0 ${ }^{3,8}$ ]undecane-2,6-diones (7) through three successive Michael reactions ${ }^{5,6}$ between the trimethylsilyl enol ethers of cyclohex-2-enones (5) and divinyl ketone (6). The tricyclo[5.3.1.0 ${ }^{3,8}$ ] undecane skeleton is the fundamental carbon framework of several polycyclic natural products such as seychellene (8) or patchouli alcohol (9).

The idea of the three-fold Michael reaction was originally described by Spitzner, ${ }^{7}$ who obtained a single Michael product (11a) in $18 \%$ yield from the reaction of divinyl ketone (6) with the kinetic enolate (10a) of 2,3-dimethylcyclohex-2-enone generated by lithium di-isopropylamide. Our initial attempts

(5)

(6)

(7)
$\mathrm{a} ; \mathrm{R}^{1}=\mathrm{R}^{\mathbf{2}}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
$b ; R^{1}=R^{4}=H, R^{2}=R^{3}=M e$
c; $\mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{R}^{3}=\mathbf{R}^{4}=\mathbf{H}$
d; $\mathbf{R}^{1}=\mathbf{M e}, \mathbf{R}^{2}=\mathbf{R}^{3}=\mathbf{R}^{4}=\mathbf{H}$
e; $\mathbf{R}^{1}=\mathbf{R}^{3}=\mathbf{R}^{4}=\mathbf{H}, \mathbf{R}^{2}=\mathbf{M e}$
$\mathrm{f} ; \mathrm{R}^{1}=\mathbf{R}^{4}=\mathrm{Me}, \mathrm{R}^{2}=\mathbf{R}^{\mathbf{3}}=\mathbf{H}$
$g ; R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{H}$, isopropenyl
Scheme 2.


Seychellene (8)


Patchouli alcohol (9)
on the three-fold Michael reaction followed the work described by Spitzner and gave results similar to his. The reaction of the kinetic enolate (10a), generated by the cleavage of the trimethylsilyl enol ether (5a) with methyl-lithium, ${ }^{8}$ with divinyl ketone (6) then resulted in the formation of a very small amount of the desired tricyclic compound (7a) ( $1-2 \%$ ). Quenching the reaction at low temperature gave exclusively the single Michael product (11a) in $49 \%$ yield in the presence of HMPA. The kinetic enolate of isophorone ( $\mathbf{1 0 b}$ ), generated in the same way, also gave the single Michael adduct (11b) in $41 \%$ yield. On the other hand, the kinetic enolates of other cyclic enones such as 2-phenylthiocyclohex-2-enone or 3-methylcyclopent-2-enone gave no Michael products. These results may be attributable to the instability of divinyl ketone (6) in the strongly basic aprotic media, to the retro-Michael reactions of the double and triple Michael adducts, or to the easy intra- and/or inter-molecular proton transfers between the ketone functionalities.
Toward this end, we turned our attention to the aprotic, Lewis acid-promoted Michael reactions in methylene dichloride which have been extensively developed by Mukaiyama and his co-workers. ${ }^{9}$ Under such reaction conditions unnecessary proton transfers are suppressed and give a restricted reaction path. At first, reaction of the trimethylsilyl enol ether (5b) of isophorone with divinyl ketone (6) was investigated as a probe


Scheme 3. Reagents and conditions: i, MeLi, THF, $-80^{\circ} \mathrm{C}$; ii, (6).

Table 1. Lewis acid-promoted three-fold Michael reaction of the trimethylsilyl enol ether (5b) of isophorone and divinyl ketone ${ }^{a}$

| Entry | Lewis acid ${ }^{b}$ (ratio) | Amount of metal to the silyl enol ether (5b) (equiv.) | Yield (\%) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (7b) | (13) | (11b) | $(14)^{h}$ |
| 1 | $\begin{gathered} \mathrm{AlCl}_{3}-\mathrm{Al}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3} \\ (1: 2) \end{gathered}$ | 3 | 1 | 27 |  |  |
| 2 | $\underset{(1: 1)^{c}}{\mathrm{TiCl}_{4}-\mathrm{Ti}\left(\mathrm{OPr}^{i}\right)_{4}}$ | 4 | 6 |  |  | 27 |
| 3 | $(1: 1)^{d}$ | 1 | 8 | 28 |  |  |
| 4 | (1:1) | 4 | 8 |  |  | 19 |
| 5 | (1:1) | 2 | 19 |  |  | 29 |
| 6 | $(1: 1)^{e}$ | 2 |  | 35 | 30 |  |
| 7 | $(1: 1)^{f}$ | 1 |  | 30 | 10 |  |
| 8 | (0.8:1) | 3.6 | 30 |  |  | 16 |
| 9 | $\mathrm{TiBr}_{4}-\mathrm{Ti}\left(\mathrm{OPr}^{\mathbf{i}}\right)_{4}$ |  |  |  |  |  |
| 10 | (1:1) | 4 | 25 |  |  |  |
| 11 | $\mathrm{Et}_{2} \mathrm{AlCl}$ | 2 | 34 |  |  |  |
|  | $\mathrm{Et}_{2} \mathrm{AlCl}^{g}$ | 2 | 34 |  |  |  |

${ }^{\text {a }}$ For representative experimental conditions, see Experimental section.
${ }^{b} A$ small amount of isophorone was recovered by $\mathrm{TiCl}_{4}, \mathrm{TiCl}_{4^{-}}$ $\mathrm{Ti}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{4}(1: 3), \mathrm{Cp}_{2} \mathrm{TiCl}_{2}, \mathrm{SnCl}_{4}$, or $\mathrm{BCl}_{3}-\mathrm{B}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3} \cdot{ }^{c} \mathrm{~A}$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1,2-dichloroethane (1:1) was used. ${ }^{d}$ THF was added at room temperature after overnight reaction (THF: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 3$ ). ${ }^{e}$ The reaction was quenched at $-75^{\circ} \mathrm{C}$ in 1 h . ${ }^{f}$ The reaction mixture was stirred at room temperature for $68 \mathrm{~h} .{ }^{g}$ Divinyl ketone was added to the mixture of Lewis acid and the silyl enol ether (5b). ${ }^{h}$ Yields are based on (5b) consumed.
to seek optimum reaction conditions. The trimethylsilyl enol ethers (5) of cyclohex-2-enones were prepared according to the procedure by House et al. ${ }^{10}$ Divinyl ketone (6) was prepared by a known procedure. ${ }^{11}$ Rapid vacuum distillation of $1,5-$ dichloropentan-3-one and quinoline from a pre-heated oil-bath was crucial to obtain a satisfactory yield of divinyl ketone (6). The results are listed in Table 1. Not all reactions were fruitful when $\mathrm{TiCl}_{4}, \mathrm{TiCl}_{4}-\mathrm{Ti}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{4}(1: 3), \mathrm{Cp}_{2} \mathrm{TiCl}_{2}, \mathrm{SnCl}_{4}$, or $\mathrm{BCl}_{3}-$ $\mathrm{B}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}$ were employed as Lewis acid promoters, since isophorone was also partially recovered. In reactions $1,3,6$, and 7, the double Michael adduct, the bicyclo[2.2.2]octanedione derivative (13) was also isolated, whilst in reactions 6 and 7 the single Michael adduct (11b) was a by-product. The desired tricyclic compound (7b) was obtained in $30 \%$ yield by employing $\mathrm{TiCl}_{4}-\mathrm{Ti}\left(\mathrm{OPr}^{1}\right)_{4}(0.8: 1)$ as the catalyst in methylene dichloride (entry 8 ). Since the third C -C bond-forming step seemed to be sluggish, as indicated by monitoring of the progress of the reaction by TLC and also by the quenching at $-75^{\circ} \mathrm{C}$ (entry 6), the reaction initiated at $-80^{\circ} \mathrm{C}$ was allowed to stand overnight with gradual warming to room temperature. The reactions catalysed by titanium(iv) were found to be sensitive to minor change of the reaction conditions as seen in entries 2-8. Attempts to change the solvent properties by the addition of a more polar or more co-ordinating solvent such as 1,2 -dichloroethane (entry 2 ), or tetrahydrofuran (entry 3 ), failed to influence the reaction. In the $\mathrm{TiCl}_{4}$-mediated
reactions, a bicyclic triketone (14) was isolated in ca. $20 \%$ yield (entries 2, 4, 5, and 8 ) along with a small amount of a bis-bicyclic triketone (15), which has a symmetrical structure as deducted from the simple ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (see Experimental section). On the other hand, the use of $\mathrm{Et}_{2} \mathrm{AlCl}$ as a catalyst gave the desired tricyclic adduct (7b) in an acceptable yield ( $34 \%$ ) (entry 10); the average yield for each of the three C-C bond-forming steps was $70 \%$. Among other Lewis acids, the oxyphilic character of aluminium might play an important role for the reaction (vide infra). The yield of (7b) was reproducible and independent upon the order of the addition of $\mathrm{Et}_{2} \mathrm{AlCl}$ or the substrate (entry 11).

Based on the results cited above, the reactions of other trimethylsilyl enol ethers ( $5 \mathbf{c}-\mathrm{g}$ ) of cyclohex-2-enones were examined (Scheme 2) and the results are listed in Table 2. The process is a general one for other cyclohex-2-enones, giving moderate yields of the tricyclic compounds ( $\mathbf{7 c - g}$ ) in the one-pot operation (entries 1-8). In these reactions, no bicyclo[2.2.2]octane or single Michael adduct were isolated. Although the tricyclic compound $(7 \mathrm{~g})$ was a single isomer, the configuration of the isopropenyl group has not been determined. The reaction of 1,5 -diphenylpenta-1,4-dien-3-one instead of divinyl ketone (6) with the silyl enol ethers (5a) and (5c) proceeded similarly giving rise to the single tricyclic compound (16) (entries 9,10 ); the orientation of the phenyl groups remains unknown. Similarly, the trimethylsilyl enol ether of cyclohept-2-enone gave the tricyclic diketone (17) (entry 11). The trimethylsilyl enol ether of 2-benzyloxy- or 2-benzoyloxy-3-methylcyclohex-2-enone gave no Michael products.

(16a), (16c)

(17)

There are two possibilities for the reaction pathway leading to the tricyclic compounds (7) and (16): the first is a three-fold Michael reaction path [path $a, \longrightarrow(18) \longrightarrow(19) \longrightarrow$, Scheme 5] and the second a Diels-Alder-Michael reaction path (path $b, \longrightarrow(\mathbf{2 0}) \longrightarrow$, Scheme 5). When the reaction of (5b) and divinyl ketone (6) was quenched at $-75^{\circ} \mathrm{C}$ after 1 h using titanium(Iv) (entry 6, Table 1), the single Michael product (11b) and the two-fold Michael product (13) were isolated in 30 and $35 \%$ yields, respectively. When $\mathrm{Et}_{2} \mathrm{AlCl}$ was used as a Lewis acid and the reaction was quenched at $-80^{\circ} \mathrm{C}$, a small amount of the unstable trimethylsilyl enol ether of the single Michael adduct (12), the single Michael adduct (11b), the double Michael adduct (13), and the triple Michael adduct (7b) were isolated along with a small amount of unchanged isophorone. The bicyclo[2.2.2]octanedione (13) was a single isomer as indicated by its NMR spectrum, the orientation of the pendant propenoyl group being tentatively assigned to be endo to the 6 -membered ring carbonyl as depicted in structure (13). It was thought that longer reactions time might bring about rearrangement of the propenoyl group to give the thermodynamically more stable endo configuration, chelation of two oxygen functionalities with a metal probably facilitating such a configuration. No reaction was observed when (13) was treated with $\mathrm{TiCl}_{4}-\mathrm{Ti}(\mathrm{OPr})_{4}$, (13) being recovered unchanged. The progress of the reaction was followed (TLC) by disappearance of the spots due to the single and the two-fold Michael products, (11b) and (13), and the appearance of the three-fold Michael

Table 2. Three-fold Michael reaction of the trimethylsilyl enol ethers of cyclohex-2-enones ( $5 \mathbf{c}-\mathrm{g}$ ) and divinyl ketones.

| Entry | Substrate | Lewis acid used ${ }^{\text {a }}$ | Yield (\%) of (7) |
| :---: | :---: | :---: | :---: |
| 1 | (5c) | A | trace |
| 2 | (5d) | A | 5 |
| 3 |  | B | 13 |
| 4 | (5e) | A | 3 |
| 5 |  | B | 13 |
| 6 | (5f) | C | 5 |
| 7 | (5g) | A | $4^{\text {b }}$ |
| 8 |  | B | 8 |
| 9 | (5b) ${ }^{\text {c }}$ | C | 5 (16a) |
| 10 | (5c) ${ }^{\text {c }}$ | C | 10 (16c) |
| 11 | ${ }^{\text {d }}$ | C | 9 (17) |

${ }^{a} \mathrm{~A}$ : A mixture of $\mathrm{TiCl}_{4}$ (1.6 equiv.) and $\mathrm{Ti}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{4}$ (2 equiv.) was used. B : 2 Equiv. of $\mathrm{Et}_{2} \mathrm{AlCl}$ was used. C : 3 Equiv. of $\mathrm{Et}_{2} \mathrm{AlCl}$ was used. ${ }^{b}$ A single isomer was obtained. ${ }^{c} 1,5$-Diphenylpenta-1,4-dien-3-one was used.
${ }^{d}$ The trimethylsilyl enol ether of cyclohept-2-enone was used.


(7b)

(14)

(15)

Scheme 4.
product (7b). These results support a sequential three-fold Michael pathway (path a, Scheme 5) for the reaction.

Since ( - -seychellene (8), isolated from patchouli oil (Pogostemon, Benth.), ${ }^{12}$ is a plant sesquiterpene possessing a unique tricyclo[5.3.1.0 ${ }^{3,8}$ ] undecane framework, its formal synthesis via a three-fold Michael reaction was attempted (Scheme 6). The results of the reaction of the trimethylsilyl enol ether (5a) of 2,3-dimethylcyclohex-2-enone with divinyl ketone (6) are listed in Table 3. The best yield ( $43 \%$ ) of the tricyclic ketone (7a) was obtained when 3 equiv. of $\mathrm{Et}_{2} \mathrm{AlCl}$ were used

Table 3. Three-fold Michael reaction of the trimethylsilyl enol ether (5a) of 2,3-dimethylcyclohex-2-enone and divinyl ketone.

| Entry | Lewis acid | Equiv. | Yield (\%) of (7a) |
| :--- | :---: | :--- | :--- |
| 1 | $\mathrm{TiCl}_{4}-\mathrm{Ti}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{4}$ |  |  |
|  | $(1: 1)$ | 4 | 9 |
| 2 | $(0.8: 1)$ | 3.6 | 20 |
| 3 | $\mathrm{Et}_{2} \mathrm{AlCl}$ | 1 | 2 |
| 4 |  | 2 | $8^{a}$ |
| 5 |  | 2 | $17^{b}$ |
| 6 |  | 2 | 34 |
| 7 |  | 3 | $37^{c}$ |
| 8 |  | 3 | $43^{d}$ |

${ }^{a}$ The amount of divinyl ketone was 2 equiv. ${ }^{b}$ The amount of divinyl ketone was 0.8 equiv. ${ }^{\text {c }}$ The triethylsilyl enol ether was used. ${ }^{d}$ The amount of divinyl ketone was 1.2 equiv.
with 1.2 equiv. of divinyl ketone (6) (entry 8). Since $\mathrm{Et}_{2} \mathrm{AlCl}$ is a good proton scavenger, ${ }^{13}$ excess of $\mathrm{Et}_{2} \mathrm{AlCl}$ played some role in improving the yield by ensuring a clean reaction. Since the tricyclic diketone (7a) has previously been transformed into ( $\pm$ )-seychellene (8) by Jung and co-workers, ${ }^{14}$ the present work constitutes a formal synthesis of naturally occurring tricyclic sesquiterpene (8). ${ }^{15}$ The spectral data for (7a) $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR, IR, and mass) were identical with those of an authentic specimen.
Path a

(7b)
(19)
Path b

$$
(5 b)+(6)
$$

$\qquad$

(7b)

Scheme 5.
Thus, we have demonstrated that a number of the trimethylsilyl enol ether (5) of cyclohex-2-enones react with divinyl ketone (6) to produce various tricyclo[5.3.1.0 ${ }^{3,8}$ ]undecane-2,6-
dione derivatives (7) by a three-fold Michael pathway, enabling the formation of three new bonds and two new six-membered rings at a one-step; the reaction has been applied to the formal total synthesis of $( \pm)$-seychellene (8).


Scheme 6.

## Experimental

IR spectra were recorded for solutions in carbon tetrachloride on a JASCO A- 3 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained for solutions in deuteriochloroform with a JEOL PMX-60 ( 60 MHz ), FX-90Q ( 22.5 MHz ) or PS-100 ( 100 MHz ) instrument with tetramethylsilane as internal standard. Mass spectra were obtained on a JEOL JMS-DX 300 spectrometer with a JMA-3500 data system. Preparative medium-pressure liquid chromatography (MPLC) were carried out on a JASCO PRC-50 instrument. Microanalyses were carried out in the microanalytical laboratory of this Institute. Ether for extractions refers to the use of diethyl ether. Light petroleum has a b.p. range of $30-50^{\circ} \mathrm{C}$. $\mathrm{Et}_{2} \mathrm{AlCl}$ was used as 1 m solution in hexane. Other Lewis acids were used as 1 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

General Procedure for a Lewis Acid-assisted Three-fold Michael Reaction.-To a stirred solution of Lewis acid in anhydrous methylene dichloride was added successively a solution of divinyl ketone (6) (1.1-1.2 equiv.) and the trimethylsilyl enol ether in anhydrous methylene dichloride at $-85^{\circ} \mathrm{C}$ under nitrogen. After being stirred for 2 h at $-80^{\circ} \mathrm{C}$, the resulting solution was allowed to warm to room temperature in 3-4 h and stand at that temperature overnight (12-18 h ). The reaction was quenched by addition of aqueous potassium carbonate and the resulting suspension was filtered through a bed of Celite. The water layer was extracted with ether ( $2 \times 30 \mathrm{ml}$ ), and the combined organic layers were washed with water and brine. After evaporation of the solvent, the residue was passed through a short column of silica gel with the aid of hexane-ethyl acetate ( $2: 1$ ), and then, the products were separated by MPLC.

3,8-Dimethyltricyclo $\left[5 \cdot 3 \cdot 1.0^{3,8}\right]$ undecane-2,6-dione (7a). M.p. $148-149^{\circ} \mathrm{C}$ (from light petroleum) (lit., ${ }^{14} 120^{\circ} \mathrm{C}$ ); $v_{\text {max }} 1720$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 0.87(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s})$, and 1.2-2.5 ( $12 \mathrm{H}, \mathrm{m}$ ); $\delta_{\mathrm{C}}(22.5$ MHz ) $19.0,20.0,22.9,25.9,28.8,31.6,34.7,40.1,40.8,49.2,54.1$, and 212.7; m/z 206 ( $M^{+}, 100$ ), 178 (25), 163 (33), 138 (59), 123 (35), 111 (43), 110 (42), 107 (39), 97 (41), 96 (53), 95 (50), 93 (42), 79 (54), and 55 (62) (Found: $\mathrm{C}, 75.9 ; \mathrm{H}, 8.8 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.7 ; \mathrm{H}, 8.8 \%$ ).

8,10,10-Trimethyltricyclo[5.3.1.0 ${ }^{3,8}$ ]undecane-2,6-dione (7b). M.p. $94-95^{\circ} \mathrm{C}$ (from light petroleum); $v_{\max } 1725$ and 1710 $\mathrm{cm}^{-1} ; \delta 0.94(3 \mathrm{H}, \mathrm{s}), 1.01(3 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{s}), 1.2-2.6(11 \mathrm{H}$, $\mathrm{m}) ; m / z 220\left(M^{+}, 59\right), 109(35), 96$ (100), and 55 (31) (Found: $\mathrm{C}, 76.6 ; \mathrm{H}, 9.3 \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.3 ; \mathrm{H}, 9.2$ ).

Tricyclo[5.3.1.0 ${ }^{3,8}$ ]undecane-2,6-dione ( $7 \mathbf{c}$ ). $v_{\max } 1725$ and $1710 \mathrm{~cm}^{-1} ; m / z 178\left(M^{+}, 100\right), 150(49), 122$ (42), 96 (44), 79 (57), and 55 (51) (Found: $M, m / z \quad 178.09894 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 178.09934$ ).

3-Methyltricyclo[5.3.1.0 ${ }^{3,8}$ ] undecane-2,6-dione (7d). $\quad v_{\max }$ 1720,1710 , and $1455 \mathrm{~cm}^{-1} ; \delta 1.18(3 \mathrm{H}, \mathrm{s})$ and $1.3-3.0(13 \mathrm{H}$, $\mathrm{m}) ; m / z 191\left(M^{+}-1,100\right), 163(70), 135$ (40), 122 (65), 110 (75),

107 (66), 96 (62), 95 (54), 93 (56), 81 (69), 80 (73), 79 (75), and 55 (60) (Found: $M, m / z 192.11548 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $M$, 192.11501 ).

8-Methyltricyclo[5.3.1.0 ${ }^{3,8}$ ]undecane-2,6-dione (7e). M.p. $120-121^{\circ} \mathrm{C}$ (from hexane); $v_{\max } 1725$ and $1710 \mathrm{~cm}^{-1} ; \delta 0.94$ ( $3 \mathrm{H}, \mathrm{s}$ ) and 1.4-2.7 ( $13 \mathrm{H}, \mathrm{m}$ ); $m / z 191\left(M^{+}-1,84\right.$ ), $163(51)$, 135 (77), 123 (100), 121 (57), 109 (62), 107 (63), 100 (57), 96 (61), 95 (97), 94 (78), 93 (72), 92 (54), 82 (51), and 55 (63) (Found: $M, 192.11431 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $M, 192.11501$ ).

1,3-Dimethyltricyclo $\left[5 \cdot 3 \cdot 1 \cdot 0^{3,8}\right.$ ]undecane-2,6-dione (7f). $v_{\max }$ 1720,1460 , and $1380 \mathrm{~cm}^{-1} ; \delta 1.00(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s})$, and 1.2-3.0 ( $12 \mathrm{H}, \mathrm{m}$ ).

10-Isopropenyl-3-methyltricyclo[5.3.1.0 ${ }^{3,8}$ ]undecane-2,6dione $(7 \mathrm{~g})$. $v_{\text {max }} 1720,1650$, and $1455 \mathrm{~cm}^{-1} ; \delta 1.08(3 \mathrm{H}, \mathrm{s})$, $1.78(3 \mathrm{H}, \mathrm{s}), 0.7-2.9(12 \mathrm{H}, \mathrm{m})$, and $4.78(2 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z 232$ ( $M^{+}, 12$ ), 231 (64), 109 (100), 108 (37), and 55 (31) (Found: $232.14666 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$ requires 232.14636 ).
6-(3-Oxopent-4-enyl)-3,5,5-trimethylcyclohex-2-enone (11b). $v_{\text {max }} 1700,1670,1620$, and $1380 \mathrm{~cm}^{-1} ; \delta 0.98(3 \mathrm{H}, \mathrm{s}), 1.07$ $(3 \mathrm{H}, \mathrm{s}), 1.5-2.5(6 \mathrm{H}, \mathrm{m}), 2.20(2 \mathrm{H}, \mathrm{s}), 2.5-2.9(2 \mathrm{H}, \mathrm{m}), 5.7-5.9$ $(2 \mathrm{H}, \mathrm{m})$, and $6.0-6.6(2 \mathrm{H}, \mathrm{m}) ; m / z 220\left(M^{+}, 7\right), 205(28), 135$ (75), 123 (98), 83 (39), 82 (100), and 55 (81) (Found: $M, m / z$ 220.146 21. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $M, 220.146$ 21).

6-(3-Trimethylsiloxypenta-2,4-dienyl)-3,5,5-trimethylcyclo-hex-2-enone (12). $\delta 0.20(9 \mathrm{H}, \mathrm{s}), 0.96(3 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{s})$, $1.90(3 \mathrm{H}, \mathrm{s}), 2.0-2.53(5 \mathrm{H}, \mathrm{m}), 4.70-5.13(3 \mathrm{H}, \mathrm{m}), 5.20(1 \mathrm{H}$, br d, $J 17$ ), $5.82(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, and $6.17(1 \mathrm{H}, \mathrm{dd}, J 17,10 \mathrm{~Hz})$.

4,6,6-Trimethyl-2-oxobicyclo[2.2.2]octan-8-yl vinyl ketone (13). M.p. $57-58^{\circ} \mathrm{C}$ (from light petroleum); $v_{\text {max }} 3100,1720$, $1695,1670,1640,1615$, and $915 \mathrm{~cm}^{-1} ; \delta(100 \mathrm{MHz}) 0.94(3 \mathrm{H}, \mathrm{s})$, $1.13(3 \mathrm{H}, \mathrm{s}), 1.25-3.05(8 \mathrm{H}, \mathrm{m}), 5.78(1 \mathrm{H}, \mathrm{dd}, J 9.5,2.0 \mathrm{~Hz}), 6.19$ $(1 \mathrm{H}, \mathrm{dd}, J 16.6,2.0 \mathrm{~Hz}$ ), and $6.44(1 \mathrm{H}, \mathrm{dd}, J 16.6,9.5 \mathrm{~Hz}) ; m / z$ $220\left(M^{+}, 12\right), 138(22), 137(29), 123$ (59), 55 (100), and 41 (60) (Found: C, $75.9 ; \mathrm{H}, 9.15 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.3 ; \mathrm{H}, 9.15 \%$ ).
\{4,6,6-Trimethyl-2-oxobicyclo[2.2.2]octan-8-yl\} [3,5,5-tri-methyl-1-oxocyclohex-2-en-6-yl] ketone (14). M.p. $102-103^{\circ} \mathrm{C}$ (from hexane); $v_{\max } 1730,1715,1670,1460,1380,1375$, and $1090 \mathrm{~cm}^{-1} ; \delta 0.92(3 \mathrm{H}, \mathrm{s}), 0.93(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{s}), 1.03(3$ $\mathrm{H}, \mathrm{s}), 1.2-3.13(13 \mathrm{H}, \mathrm{m}), 1.90(3 \mathrm{H}, \mathrm{br}$ s), $2.17(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, and $5.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z 359\left(M^{+}+1,29\right) ; 358\left(M^{+}, 22\right), 221$ (64), 193 (59), 165 (54), 138 (55), 123 (100), 121 (30), 69 (34), and 55 (43) (Found: $358.25115 . \quad \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}$ requires 358.25075 ).

Bis $4,6,6$-trimethyl-2-oxobicyclo[2.2.2]octan-8-yl\} Ketone (15). M.p. 181-182 ${ }^{\circ} \mathrm{C}$ (crystallized spontaneously); $v_{\max } 1720$, $1465,1380,1080$, and $860 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.93(3 \mathrm{H} \times 2, \mathrm{~s}), 1.02$ ( $3 \mathrm{H} \times 2$, s), $1.12\left(3 \mathrm{H} \times 2\right.$, s), and $1.22-3.13(8 \mathrm{H} \times 2, \mathrm{~m})$; $\delta_{\mathrm{c}}$ 24.1, 24.4, 28.7, 31.2, 31.7, 37.1, 44.2, 50.8, 51.2, 54.0, and 214.5; $m / z 359\left(M^{+}+1,32\right), 358\left(M^{+}, 32\right), 221(59), 165(87), 138$ (68), 123 (90), 121 (100), 95 (47), 81 (41), 69 (49), 55 (48), and 41 (46) (Found: $358.25052 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}$ requires 358.25075 ).

3,8-Dimethyl-4,11-diphenyltricyclo[5.3.1.0 ${ }^{3.8}$ ]undecane-2,6dione (16a). M.p. 204-205 ${ }^{\circ}$ (from ether); $v_{\max } 1720 \mathrm{sh}, 1715$, $1660,1605,1500$, and $1458 \mathrm{~cm}^{-1} ; \delta 0.83(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{s})$, 1.4-2.1 ( $5 \mathrm{H}, \mathrm{m}$ ), 2.5-2.8 ( $1 \mathrm{H}, \mathrm{m}$ ), $2.93(2 \mathrm{H}, \mathrm{t}, J 3.5 \mathrm{~Hz}), 3.2-3.4$ $(1 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{dd}, J 7,3 \mathrm{~Hz}), 7.33(10 \mathrm{H}, \mathrm{s}) ; m / z 358$ $\left(M^{+}, 100\right), 226$ (98), 196 (57), 105 (32), 104 (59), and 91 (43).

4,11-Diphenyltricyclo[5.3.1.0 ${ }^{3,8}$ ] undecane-2,6-dione (16c). $v_{\max } 1720,1715 \mathrm{sh}, 1605,1495$, and $1455 \mathrm{~cm}^{-1} ; \delta 1.75(4 \mathrm{H}$, br s), 2.2-2.7 ( $3 \mathrm{H}, \mathrm{m}$ ), 2.7-3.0 ( $2 \mathrm{H}, \mathrm{m}$ ), $3.18(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.9-4.3$ $(1 \mathrm{H}, \mathrm{m}), 7.27(5 \mathrm{H}, \mathrm{s})$, and $7.29(5 \mathrm{H}, \mathrm{s}) ; m / z 330\left(M^{+}, 4\right), 226$ (27), 135 (100), 131 (29), and 124 (32) (Found: 330.16188. $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{2}$ requires 330.16188 ).

Tricyclo $\left[5.4 .1 .0^{3,8}\right]$ dodecane-2,6-dione (17). M.p. $60-61^{\circ} \mathrm{C}$; $v_{\max } 1710,1455$, and $1235 \mathrm{~cm}^{-1} ; \delta 1.3-2.1(9 \mathrm{H}, \mathrm{m})$ and 2.2-3.1 $(7 \mathrm{H}, \mathrm{m}) ; m / z 192\left(M^{+}, 10\right), 191(88), 163$ (34), 125 (100), $95(39)$, 79 (63), and 55 (69) (Found: 192.115 19. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ requires 192.11501 ).

## Acknowledgements

We thank Professor M. E. Jung, UCLA, for providing the spectra of the tricyclic diketone (7a).

## References

1 (a) M. Ihara and K. Fukumoto, J. Synth. Org. Chem. Soc. Jpn., 1986, 44, 96; (b) G. H. Posner, Chem. Rev., 1986, 86, 831.
2 Some other recent examples of annulation reactions by the successive Michael reactions picked up arbitrary: P. Beak and D. A. Burg, J. Org. Chem., 1989, 54, 1647; G. H. Posner and E. M. Schulman-Roskes, ibid., 1989, 54, 3514; T. Uyehara, N. Shida, and Y. Yamamoto, J. Chem. Soc., Chem. Commun., 1989, 113; L.-F. Lavallee and P. Deslongchamps, Tetrahedron Lett., 1988, 29, 6033.
3 H. Hagiwara, T. Kodama, H. Kosugi, and H. Uda, J. Chem. Soc., Chem. Commun., 1976, 413; H. Hagiwara, H. Uda, and T. Kodama, J. Chem. Soc., Perkin Trans. 1, 1980, 963.
4 (a) H. Hagiwara and H. Uda, J. Chem. Soc., Perkin Trans. 1, 1986, 629, and references cited therein; (b) H. Hagiwara, A. Okano, T. Akama, and H. Uda, J. Chem. Soc., Chem. Common., 1987, 1333; (c) H. Hagiwara, T. Akama, A. Okano, and H. Uda, Chemistry Lett., 1988, 1793.
5 Preliminary communication: H. Hagiwara, A. Okano, and H. Uda, J. Chem. Soc., Chem. Commun., 1985, 1047.

6 Other recent example of the triple Michael reaction: C. Thanupran, C. Thebtaranonth, and Y. Thebtaranonth, Tetrahedron Lett., 1986, 27, 2295.

7 D. Spitzner, Angew. Chem., Int. Ed. Engl., 1978, 17, 197.
8 G. Stork and P. F. Hudrlik, J. Am. Chem. Soc., 1968, 90, 4464.
9 K. Narasaka, K. Soai, Y. Aikawa, and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1976, 49, 779.
10 H. O. House, L. J. Czuba, M. Gall, and H. D. Olmstead., J. Org. Chem., 1969, 34, 2324.
11 G. R. Owen and C. B. Reese, J. Chem. Soc., 1970, 2401.
12 (a) Isolation: N. Tsubaki, K. Nishimura, and Y. Hirose, Bull. Chem. Soc. Jpn., 1967, 40, 597; (b) Structure determination: G. Wolff and G. Ourisson, Tetrahedron, 1969, 25, 4903.

13 B. B. Snider, Acc. Chem. Res., 1980, 13, 426.
14 M. E. Jung, C. A. McCombs, Y. Takeda, and Y.-G. Pan, J. Am. Chem. Soc., 1981, 103, 6677.
15 (a) K. V. Bhaskar and G. S. R. Subba Rao, Tetrahedron Lett., 1989, 30, 225; (b) G. Stork and N. H. Baine, ibid., 1985, 26, 5927; (c) S. C. Welch, C.-Y. Chou, J. M. Gruber, and J.-M. Assercq, J. Org. Chem., 1985,50,2668, and the references for the earlier alternative syntheses cited therein; (d) For synthesis of the substituted tricyclo[5.3.1.0 ${ }^{3.8}$ ]undecane ring system, D. Spitzner, Tetrahedron Lett., 1978, 3349.

Paper 9/05152J
Received 4th December 1989
Accepted 20th December 1989

